

A 92%-Efficiency Inductor-Charging Switched-Capacitor Stimulation System with Level-Adaptive Duty Modulation and Offset Charge Balancing

Kyeongho Eom, Han-Sol Lee, Minju Park, Seung-Beom Ku, Kwonhong Lee, and Hyung-Min Lee School of Electrical Engineering, Korea University, Seoul, Korea

	Motivation		Problems of Previous Stim. Systems				
Brain & Computer Interface	Deep Brain Stimulation	Prosthetic Limbs	Types of Stimulators	Conventional SCS Systems			
	DBS burr Implanted wireless hole DBS system		Stimulator Type				

DBS battery & Processo

DBS lead

Retinal Prosthesis

- Implantable medical devices (IMD) with *miniaturized stimulator SoCs* are essential technology for disease treatment and rehabilitation.
- Since the stimulator SoC *injects a large amount of stimulus energy* into the tissue, serious attention should be paid to safety, energy efficiency, and stimulation efficacy.

Proposed iSCS System

Inductor-Charging Switched-Capacitor Stimulation(iSCS) System

- Switched-capacitor stimulation (SCS) ensures <u>charge-balanced</u> and <u>power-efficient stimulation</u> 🙂
- Conventional AC-input SCS systems may be disturbed by a loosely-coupled inductive links 🛞

Proposed Ideas & Circuit Details

Level-Adaptive Capacitor Charging

Offset-Control Charge Balancing

The iSCS system efficiently charges the capacitor from DC input voltage, V_{IN} . Offset-control charge balancing *minimizes the mismatch* between cathodic and anodic charge, while the system *provides biphasic stimulation* by discharging charges through the electrodes to the tissue.

High-efficiency capacitor charging regardless of charging start voltage.

Minimizes charge mismatch by <u>applying</u> offsets to the anodic stimulation voltage.

Chip Test & In Vivo Animal Experiment

Capacitor Charging Waveforms •••

stim. cycles

Balanced anodic

2.3V

Charging Discharg

Charging

2ms ←→

Iuscular iSCS

adjusted VTG2 charge due Small current 8 Constant cathodic ne when shorting current

2.9V

In vivo Animal Experiment

Performance Comparison

Comparison Table with State-of-the-art Stimulation Systems & Conclusion

Publication	JSSC 2015 [15]	TBioCAS 2017 [17]	TBioCAS 2017 [13]	TBioCAS 2019 [19]	TBioCAS 2019 [23]	TBioCAS 2020 [25]	This Work	
Technology	0.35-µm	0.18-µm	0.18-µm	0.18-µm HV	0.18-µm	0.35-µm	0.18-µm	
Stimulator Type	SCS	SCS (High Freq.)	Current Stim.	Current Stim. (High Freq.)	CCS	SCS	Inductor-based SCS (iSCS)	
# Channels	4	1	4	8	16	4	4	
Supply Voltage (V)	± 2.1	5	12 (4V _{DD})	3.5	-3.3 to +3.9 (9V _{DD})	4	3.3	
Cap. Charging Efficiency (%)	82 ^A	50	-	- 2	-	84.8 ^A	90 (0→3V)	92.7 (1.5→3V
Charge Transfer Efficiency (%)	98	98	-	-	-	99	99.2	
Stimulator Peak Efficiency (%)	80.4	49	54	68	-	83.9	89.3	92
Stimulus Shape	Decaying Exponential	Pulse Train	Rectangular	Pulse Train	Rectangular	Decaying Exponential	Decaying Exponential	
Series RC Model	0.5kΩ + 1μF	-	1kΩ + 100nF	0.2kΩ + 200nF	1.1kΩ + 33nF//36kΩ	-	1kΩ + 1μF	
Cap. Charging Time (µs)	40 - 420 (1µF)	-	-	-	-	-	15.9 - 50 (1µF)	
Cap. Charging Freq. (MHz)	2	-	-	-	-	13.56	2.2	
Stim. Amplitude	0.45 - 2V (5 bit)	5 V	0 - 3mA	< 10mA (6 bit)	-	2 - 4V (3 bit)	0 - 3V (6 bit)	
Stim. Freq. (Hz)	7.6 - 244Hz ^B	-	-	-	-	2 - 50Hz	75 - 250Hz ^B	
Stim. Pulse Width (μs)	16 - 512µѕ ^в	-	-	-	-	1.25 - 20ms (4 bit)	250 - 2000µs ^B	
Chip Area (mm ²)	12	0.035 (1 ch)	3.5	3.65	0.22	9.6	1.28	
In Vivo Verification	Yes	No	Yes	No	No	Yes	Yes	

Proposed iSCS

- AC/DC + iSCS

The *in vivo* experiments verified *that decaying exponential waveform enables longer eye movement* than conventional rectangular waveform.

The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea. Acknowledgement

This work was supported by the Technology Innovation Program (20016289) funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea

